Second Hankel Determinant for a Class of Analytic Functions Defined by Fractional Derivative

نویسندگان

  • Akshaya Kumar Mishra
  • Priyabrat Gochhayat
چکیده

Also let S, S∗ β , CV β , and K denote, respectively, the subclasses of A0 consisting of functions which are univalent, starlike of order β, convex of order β cf. 1 , and close-to-convex cf. 2 in U. In particular, S∗ 0 S∗ and CV 0 CV are the familiar classes of starlike and convex functions in U cf. 2 . Given f and g inA, the function f is said to be subordinate to g in U if there exits a functionω ∈ A satisfying the conditions of the Schwarz Lemma such that f z g ω z , z ∈ U . We denote the subordination by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An upper bound to the second Hankel functional for the class of gamma-starlike functions

‎The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$‎ ‎for the function $f$‎, ‎belonging to the class of Gamma-starlike functions‎, ‎using Toeplitz determinants‎. ‎The result presented here include‎ ‎two known results as their special cases‎.  

متن کامل

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

On the generalized mass transfer with a chemical reaction: Fractional derivative model

In this article using the inverse Laplace transform, we show analytical solutions for the generalized mass transfers with (and without) a chemical reaction. These transfers have been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also, using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the generalized Airy functions.

متن کامل

Transient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative

In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary condition is considered. The corresponding fractional system is represented by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are acquired by means of Laplace and finite Hankel transforms. Additionally...

متن کامل

A Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions

In this paper‎, ‎a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly‎. ‎First‎, ‎the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs)‎. ‎Then‎, ‎the unknown functions are approximated by the hybrid functions‎, ‎including Bernoulli polynomials and Block-pulse functions based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008